Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38411501

RESUMEN

SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.


Neurons in the brain communicate with one another by passing molecules called neurotransmitters across the synapse connecting them together. Mutations in the machinery that controls neurotransmitter release can lead to epilepsy or developmental delays in early childhood, but how exactly is poorly understood. Neurotransmitter release is primarily controlled by three proteins that join together to form the SNARE complex, and another protein called synaptotagmin-1. This assembly of proteins primes vesicles containing neurotransmitter molecules to be released from the neuron. When calcium ions bind to synaptotagmin-1, this triggers vesicles in this readily releasable pool to then fuse with the cell membrane and secrete their contents into the small gap between the communicating neurons. Mutations associated with epilepsy and developmental delays have been found in all components of this release machinery. Here, Kádková, Murach, Østergaard et al. set out to find how three of these mutations, which are found in a protein in the SNARE complex called SNAP25, lead to aberrant neurotransmitter release. Two of these mutations are located in the interface between the SNARE complex and synaptotagmin-1, while the other is found within the bundle of proteins that make up the SNARE complex. In vitro and ex vivo experiments in mice revealed that the two interface mutations led to defects in vesicle priming, while at the same time bypassing the control by synaptotagmin-1, resulting in vesicles spontaneously fusing with the cell membrane in an unregulated manner. These mutations therefore combine loss-of-function and gain-of-function features. In contrast, the bundle mutation did not impact the number of vesicles in the releasable pool but reduced spontaneous and calcium ion evoked vesicle fusion. This was due to the mutation destabilizing the SNARE complex, which reduced the amount of energy available for merging vesicles to the membrane. These findings reveal how SNAP25 mutations can have different effects on synapse activity, and how these defects disrupt the release of neurotransmitters. This experimental framework could be used to study how other synaptic mutations lead to diseases such as epilepsy. Applying this approach to human neurons and live model organisms may lead to the discovery of new therapeutic targets for epilepsy and delayed development.


Asunto(s)
Fusión de Membrana , Transmisión Sináptica , Animales , Ratones , Exocitosis , Mutación , Proteínas SNARE/genética
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894872

RESUMEN

With the increasing popularity of cryo-electron tomography (cryo-ET) in recent years, the quest to establish a method for growing primary neurons directly on electron microscopy grids (EM grids) has been ongoing. Here we describe a straightforward way to establish a mature neuronal network on EM grids, which includes formation of synaptic contacts. These synapses were thin enough to allow for direct visualization of small filaments such as SNARE proteins tethering the synaptic vesicle (SV) to the active zone plasma membrane on a Titan Krios without prior focused ion-beam milling.


Asunto(s)
Astrocitos , Sinapsis , Microscopía por Crioelectrón/métodos , Tomografía con Microscopio Electrónico/métodos , Neuronas
3.
EMBO Rep ; 24(5): e55719, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36876590

RESUMEN

Synaptic vesicle (SV) fusion with the plasma membrane (PM) proceeds through intermediate steps that remain poorly resolved. The effect of persistent high or low exocytosis activity on intermediate steps remains unknown. Using spray-mixing plunge-freezing cryo-electron tomography we observe events following synaptic stimulation at nanometer resolution in near-native samples. Our data suggest that during the stage that immediately follows stimulation, termed early fusion, PM and SV membrane curvature changes to establish a point contact. The next stage-late fusion-shows fusion pore opening and SV collapse. During early fusion, proximal tethered SVs form additional tethers with the PM and increase the inter-SV connector number. In the late-fusion stage, PM-proximal SVs lose their interconnections, allowing them to move toward the PM. Two SNAP-25 mutations, one arresting and one disinhibiting spontaneous release, cause connector loss. The disinhibiting mutation causes loss of membrane-proximal multiple-tethered SVs. Overall, tether formation and connector dissolution are triggered by stimulation and respond to spontaneous fusion rate manipulation. These morphological observations likely correspond to SV transition from one functional pool to another.


Asunto(s)
Transmisión Sináptica , Vesículas Sinápticas , Vesículas Sinápticas/fisiología , Transmisión Sináptica/fisiología , Exocitosis/fisiología , Membrana Celular , Fusión de Membrana
4.
Neuropharmacology ; 222: 109297, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36341805

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) play an essential role in excitatory neurotransmission in the mammalian brain, and their physiological importance is underscored by the large number of pathogenic mutations that have been identified in the receptor's GluN subunits and associated with a wide range of diseases and disorders. Here, we characterized the functional and pharmacological effects of the pathogenic N650K variant in the GluN1 subunit, which is associated with developmental delay and seizures. Our microscopy experiments showed that when expressed in HEK293 cells (from ATCC®), the GluN1-N650K subunit increases the surface expression of both GluN1/GluN2A and GluN1/GluN2B receptors, but not GluN1/GluN3A receptors, consistent with increased surface expression of the GluN1-N650K subunit expressed in hippocampal neurons (from embryonic day 18 of Wistar rats of both sexes). Using electrophysiology, we found that the GluN1-N650K variant increases the potency of GluN1/GluN2A receptors to both glutamate and glycine but decreases the receptor's conductance and open probability. In addition, the GluN1-N650K subunit does not form functional GluN1/GluN2B receptors but does form fully functional GluN1/GluN3A receptors. Moreover, in the presence of extracellular Mg2+, GluN1-N650K/GluN2A receptors have a similar and increased response to ketamine and memantine, respectively, while the effect of both drugs had markedly slower onset and offset compared to wild-type GluN1/GluN2A receptors. Finally, we found that expressing the GluN1-N650K subunit in hippocampal neurons reduces excitotoxicity, and memantine shows promising neuroprotective effects in neurons expressing either wild-type GluN1 or the GluN1-N650K subunit. This study provides the functional and pharmacological characterization of NMDARs containing the GluN1-N650K variant.


Asunto(s)
Memantina , Receptores de N-Metil-D-Aspartato , Humanos , Ratas , Femenino , Masculino , Animales , Ratas Wistar , Receptores de N-Metil-D-Aspartato/genética , Memantina/farmacología , Células HEK293 , Ácido Glutámico , Mamíferos
5.
FEBS J ; 286(18): 3664-3683, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31116904

RESUMEN

The transient receptor potential ankyrin 1 (TRPA1) channel is a polymodal sensor of environmental irritant compounds, endogenous proalgesic agents, and cold. Upon activation, TRPA1 channels increase cellular calcium levels via direct permeation and trigger signaling pathways that hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2 ) in the inner membrane leaflet. Our objective was to determine the extent to which a putative PIP2 -interaction site (Y1006-Q1031) is involved in TRPA1 regulation. The interactions of two specific peptides (L992-N1008 and T1003-P1034) with model lipid membranes were characterized by biophysical approaches to obtain information about affinity, peptide secondary structure, and peptide effect in the lipid organization. The results indicate that the two peptides interact with lipid membranes only if PIP2 is present and their affinities depend on the presence of calcium. Using whole-cell electrophysiology, we demonstrate that mutation at F1020 produced channels with faster activation kinetics and with a rightward shifted voltage-dependent activation curve by altering the allosteric constant that couples voltage sensing to pore opening. We assert that the presence of PIP2 is essential for the interaction of the two peptide sequences with the lipid membrane. The putative phosphoinositide-interacting domain comprising the highly conserved F1020 contributes to the stabilization of the TRPA1 channel gate.


Asunto(s)
Metabolismo de los Lípidos/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolípidos/química , Canal Catiónico TRPA1/química , Fenómenos Biofísicos , Calcio/química , Células HEK293 , Humanos , Cinética , Potenciales de la Membrana/genética , Péptidos/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfolípidos/metabolismo , Estructura Secundaria de Proteína , Transducción de Señal/genética , Canal Catiónico TRPA1/genética
6.
Cell Rep ; 26(9): 2340-2352.e5, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811985

RESUMEN

Information transfer across CNS synapses depends on the very low basal vesicle fusion rate and the ability to rapidly upregulate that rate upon Ca2+ influx. We show that local electrostatic repulsion participates in creating an energy barrier, which limits spontaneous synaptic transmission. The barrier amplitude is increased by negative charges and decreased by positive charges on the SNARE-complex surface. Strikingly, the effect of charges on the barrier is additive and this extends to evoked transmission, but with a shallower charge dependence. Action potential-driven synaptic release is equivalent to the abrupt addition of ∼35 positive charges to the fusion machine. Within an electrostatic model for triggering, the Ca2+ sensor synaptotagmin-1 contributes ∼18 charges by binding Ca2+, while also modulating the fusion barrier at rest. Thus, the energy barrier for synaptic vesicle fusion has a large electrostatic component, allowing synaptotagmin-1 to act as an electrostatic switch and modulator to trigger vesicle fusion.


Asunto(s)
Proteínas SNARE/química , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Fusión de Membrana , Ratones , Ratones Noqueados , Modelos Neurológicos , Electricidad Estática , Sinaptotagmina I/fisiología
7.
Neuroscience ; 420: 50-71, 2019 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-30267828

RESUMEN

SNARE-complexes drive the fusion of membrane-bound vesicles with target membranes or with each other (homotypic fusion). The SNARE-proteins are subdivided into Qa, Qb, Qc and R-SNAREs depending on their position in the four-helical SNARE-bundle. Here, we review the SNAP-25 protein sub-family, which includes both the Qb and Qc SNARE-domains within a single protein. In vertebrates, this sub-family consists of SNAP-25, SNAP-23, SNAP-29 and SNAP-47, named for their apparent molecular weights. SNAP-25 and SNAP-23 are specialized for driving regulated exocytosis. SNAP-25 performs this function in the nervous system, and in neuroendocrine cells, where fast Ca2+-dependent triggering is required in order to synchronize release with an electrical signal, whereas SNAP-23 drives regulated exocytosis in most other cases that have been studied, e.g. platelet exocytosis or glucose transporter trafficking. SNAP-25 is regulated by alternative splicing, phosphorylation and by G-protein binding, and it regulates Ca2+-channels, neuronal survival and postsynaptic spine development. SNAP-23 is primarily regulated by phosphorylation within the linker connecting Qb to Qc. Cross-rescue experiments show that SNAP-25 and SNAP-23 can (at least partly) substitute for each other, whereas SNAP-29 and SNAP-47 cannot. SNAP-29 is present on intracellular membranes and performs functions in autophagosome-to-lysosome fusion, among others. An overlapping function for SNAP-47 was described; in addition, SNAP-47 mediates postsynaptic AMPA-receptor insertion. Overall, the presence of two SNARE-domains confers members of this family the ability to associate to different Qa and R-SNAREs and drive diverse membrane fusion reactions; one member of the family, SNAP-25, has been devoted entirely to Ca2+-triggered fusion and has taken on a number of additional, regulatory roles.


Asunto(s)
Exocitosis/fisiología , Neuronas/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo , Animales , Humanos
8.
Sci Signal ; 11(514)2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29363587

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) is a temperature-sensitive ion channel activated by various pungent and irritant compounds that can produce pain in humans. Its activation involves an allosteric mechanism whereby electrophilic agonists evoke interactions within cytosolic domains and open the channel pore through an integrated nexus formed by intracellular membrane proximal regions that are densely packed beneath the lower segment of the S1-S4 sensor domain. Studies indicate that this part of the channel may contain residues that form a water-accessible cavity that undergoes changes in solvation during channel gating. We identified conserved polar residues facing the putative lower crevice of the sensor domain that were crucial determinants of the electrophilic, voltage, and calcium sensitivity of the TRPA1 channel. This part of the sensor may also comprise a domain capable of binding to membrane phosphoinositides through which gating of the channel is regulated in a state-dependent manner.


Asunto(s)
Calcio/metabolismo , Activación del Canal Iónico , Potenciales de la Membrana , Canal Catiónico TRPA1/fisiología , Regulación Alostérica , Secuencia de Aminoácidos , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Dominios Proteicos , Homología de Secuencia , Canal Catiónico TRPA1/química
9.
J Cell Mol Med ; 22(2): 1355-1362, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29210178

RESUMEN

Exposure to repetitive low-frequency electromagnetic field (LF-EMF) shows promise as a non-invasive approach to treat various sensory and neurological disorders. Despite considerable progress in the development of modern stimulation devices, there is a limited understanding of the mechanisms underlying their biological effects and potential targets at the cellular level. A significant impact of electromagnetic field on voltage-gated calcium channels and downstream signalling pathways has been convincingly demonstrated in many distinct cell types. However, evidence for clear effects on primary sensory neurons that particularly may be responsible for the analgesic actions of LF-EMF is still lacking. Here, we used F11 cells derived from dorsal root ganglia neurons as an in vitro model of peripheral sensory neurons and three different protocols of high-induction magnetic stimulation to determine the effects on chemical responsiveness and spontaneous activity. We show that short-term (<180 sec.) exposure of F11 cells to LF-EMF reduces calcium transients in response to bradykinin, a potent pain-producing inflammatory agent formed at sites of injury. Moreover, we characterize an immediate and reversible potentiating effect of LF-EMF on neuronal spontaneous activity. Our results provide new evidence that electromagnetic field may directly modulate the activity of sensory neurons and highlight the potential of sensory neuron-derived cell line as a tool for studying the underlying mechanisms at the cellular and molecular level.


Asunto(s)
Campos Electromagnéticos , Células Receptoras Sensoriales/metabolismo , Bradiquinina/farmacología , Calcio/metabolismo , Línea Celular , Humanos , Células Receptoras Sensoriales/efectos de los fármacos , Canal Catiónico TRPA1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...